The reverberation noise and its model:

LIKELIHOOD RATIO DETECTION OF SIGNALS ON

In the active sonar technique there is distortion from the underwater channel an
REVERBERATION NOISE

fading and also @severberation noiseomponent from echoes due to return from
surface, volume and bottom scatterers. The background noise is Gaussian a
independent with the contact signal. The reverberation noise is non-Gaussian a
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A novel likelihood ratio detection method

Assume the variance df (¢) finite, and apply the Cramér-Hida decomposition:
This likelihood ratio detection method is applicable in the context of stochastic
dependency of the signal and noise — as is the case of reverberation noise — ang K .
where the classical signal detection methods are not applicable. The motivation N(t) = Z / Fy(t, x)d By(z)
for this model arises from active sonar applications; however the applicability of k=1 0
the method extends to wider areas, such as remote sensing and pattern
recognition.

where:

e F}(t,s) are causal transformgi.(s,t) = 0if s > ¢
The novel aspects of the method are:

e the signal and the noise may be stochastically dependent: e K is theCramér-Hida multiplicityof N (t); it indicates the complexity of the

: . : random process. We restrict to the cdse-= 1.
e both the signal and the noise are allowed to be non-Gaussian and

nonsstationary. e B,(t),1 < k < K stochastic processes with orthogonal independent

iIncrements.
We present: the detection model, the likelihood ratio algorithm and its

Implementation together with practical results of its performance and
comparisons against three classical detection schemes.

The detection problem

The detection problem consists in terms of statistical hypotheses, of choosing
CONTACT

between:
{HO:X(t) N(t) 0<t<T e ~,

— Spread Spread
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frequency frequency

whereX (t), S(t) and N (t) are the stochastic processes describing the received
signal, the transmitted signal and the noise, respectively.
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The basic operation is to compare a likelihood ratio with a threshold determined SRgElbEElen ke
by a certain criterion. Neyman-Pearson criterion assigns the detector to the ™| scatterers E :.::2
likelihood ratio expressed as a Radon-Nykodym derivatije™ and it sottom
minimizes the probability of non-detection for a given probability of false alarm,
and so resulting in an optimal detector.

Figure 1: Active sonar diagram: reverberation limited environment when
reverberation noise surpasses the bottom noise.

The mathematical model for contact signal

If the target is present then the oscillation process contains one outstandin
component which is smoother than the noise and the contact sifnalis
expressed as:

S(t) /0 F(t,z)s(x)6(dr)

e 5(t) includes the information carried by the target

e ['(t, x) multiplies both the noise and the “signail't) because the injected
signal is their common root

e The statistical distribution of(¢) is supposed to be unknown!

Preliminaries for the likelihood ratio detection algorithm

The detection problem has a rigorous solution, if the following four operations
are fulfilled:

A. There exists a likelihood ratio, i.e.Ps,y IS absolutely continuous with
respect toPy. This requirement is met under the finite energy condition:

P (fOT s*(z)dB(z) < oo) =1.

B. Compute the functional:
dPg N
d Py
for each received signal and without knowing which of #hg 5 or Py regimes
are applicable. Use the likelihood ratio detection algorithm.

A:

C. Determine the thresholdl, required for decision, associated with every prede-
fined probability of false alarm :

5= Py (f € Lu[0,T] : A(f) > Ao).

For any/\( the probability of detection — n is obtained from:
n= Poin (A(f) < Ao).

D. Find a discretization for which approximations of A provide:

Py (An (F(t1), ..., f(t)) > Ag”>) ~ § and

Poyn (A (f(t1), .-, f(tn)) > Ag) =1 =1

whereA(()”) IS the value of the threshold obtained whers replaced by its approx-
imation A\, in the expression defining

Remark: Operation€ andD are strongly dependent on the particular features of
the detection problem.

Likelihood ratio detection algorithm Comparison with other classical detection methods

Assume the following are known: the unfiltered noise variaicte filtered We compare the performance of the new method against the following three
noise covariance — or the causal filter transform application s) — and the classical methods:

span of timée[’ available for observation. 1. Gaussian versus Gaussian (GVG):

Ai(z) = (x — my) Rx,l (x —my)" — (z — my) Rg}FN (x —my)" +

The algorithm consists of the following five steps: 2 (z — my)* Rgly (msen — my)
+N

X

Step 1. Compute the noise covariance 2. Differential likelihood detector (DFL):

Cn(t,7) = /0 ) F(t,z)F(r,)db(z) Ao(2) = (z = my) Ry (Rsyn — By)) Ry (z — my)* +

2(x — my)*Ry (msiy — my)*
or estimateF'(t, s) if the noise covariance is known.
3. Whitening energy detector (WEN):

As = 2*Ry'x
Step 2Compute the eigenvalués, m > 1, and the orthonormal eigenvectors ’ N

e;, m > 1, of the covariance operator associated with(t, 7) (Principal

Numerical results are presented in Figure 2.
Components).

Step 3 Approximate the whitening procesdg( f,t) by:

M(f) = 3 MO (f,t),n <m _ e
1=1 I Pt

Step 4Compute the functional giving the likelihood ratio for the unfiltered
processes:
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Step 5Compute the functional(f) = ‘ZD%NN(f) from A(f) = Ao M(f). Figure 2: Comparison between ROC of the detector givef byd three
classical different detectors.

Implementation Conclusions

e Discretize to approximate: e This new likelihood ratio based algorithm is suited for specific detection

dPs N problems where:
In (z)
dPy

in terms of the whitening procesd (f, ).

— the noise is dependent on the signal to be detected
— the noise may be non-Gaussian with impulsive components
— the noise may be non-stationary

e Processing stage: — the statistical law of the signal to be detected is unknown.
M (x,t;) &~ [L F, w (t,)],, 1<i<n—1
e The implementation is not straightforward and it is strongly dependent on the

whereCov(N) = F,Fy and[Lu], = >, uz. characteristics of the data.

e When successfully implemented, the algorithm provides very good receiver

e Compute recursively from the step abolg(z, t,) as approximations of the _ o
operating characteristic (ROC).

In |22 ().

e Under minimal assumptions the applicability of the algorithm extends to
remote sensing and pattern recognition tasks.
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